
e-MERLIN Data School

This event has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 101004719

Welcome!

Dave Williams-Baldwin Justin BrayEmmanuel Bempong-Manful

Code of Conduct

� This workshop will be running under the auspices of the Opticon RadioNet Pilot (ORP)
Code of Conduct, which can be found here: https://www.e-
merlin.ac.uk/ORP_Code_of_Conduct.pdf

� All members of the workshop are expected to treat each other equally and with repect,
regardless of gender, sexual orientation, gender identity, race, ethnicity, national origin,
physical disability, religion, age or any other attribute.

� We do not tolerate any form of bullying, discrimination, verbal, non-verbal or physical
harassment, racism, retaliation, threatening behaviour, or any other inappropriate
conduct. Members must be aware that behaviours and language acceptable to one
person may not be to another and therefore are expected to make every effort to ensure
that words and actions communicate respect for one another.

https://www.e-merlin.ac.uk/ORP_Code_of_Conduct.pdf

Proposed schedule

Monday Tuesday Wednesday
10:00-11:00 School Overview +

Radio 101
Calibration Overview Optical talk and Q+A

11:00-11:15 Coffee Coffee Coffee
11:15-12:30 Radio 101 + CASA

demo
Hands on Session e-MERLIN Proposal

guide
12:30-13:30 Lunch Lunch Lunch
13:30-14:45 eMCP Overview Imaging Advanced imaging
14:45-15:00 Coffee Coffee Coffee
15:00-16:00 Hands on Session Hands on Session Hands on Session

Bold sessions include hands on help

Housekeeping

� Data school website: https://www.e-merlin.ac.uk/eMER_data_school_2023.html

� Dataset used: https://www.e-merlin.ac.uk/distribute/CY8/TS8004/TS8004.html
� Or use your own data!

� ERIS Radio interferometry lectures: https://www.jive.eu/ERIS2022/lectures.php

� ERIS Radio calibration of the same dataset:
https://www.jb.man.ac.uk/DARA/ERIS22/3C277_full.html

https://www.e-merlin.ac.uk/eMER_data_school_2023.html
https://www.e-merlin.ac.uk/distribute/CY8/TS8004/TS8004.html
https://www.jive.eu/ERIS2022/lectures.php
https://www.jb.man.ac.uk/DARA/ERIS22/3C277_full.html

Getting Started

Log ins

� You should have a log in under the username ”wshop#” where # is a number

� A password is provided which will get you access to that machine

� We will use the same machines all week

� Data that has been requested has been downloaded onto these machines, so you can
use those datasets, or, use the training dataset for TS8004.

Where is the working area?

� The working area is:

/mirror1/scratch/DataSchool1 (for
botham/wshop1)

/mirror2/scratch/DataSchool2 (for
richards/wshop2)

/raid/scratch/DataSchool# (for all other
logins)

� The # refers to the wshop username
number, i.e 3-7

� These will be labelled as the
/workingarea/ for this workshop

� You can find the datasets in:

/workingarea/Data for all logins

� For this tutorial, we will use CASA 5.8,
which we have downloaded to:

/workingarea/casa-release-5.8.0-109.el6 for
all logins

� You can run CASA by using:

/workingarea/casa-release-5.8.0-
109.el6/bin/casa for all logins

Basic CASA syntax

� CASA works like python, and has different
commands that you can call using:

default listobs

� You can find out the inputs for a task with:
inp listobs

� If you need help with a taks:
help listobs

� And start a task with:
go listobs

Basic CASA syntax

� You can either type in the parameters per
task like:

default listobs

vis=‘TS8004_C_001_20190801_avg.ms/’

go listobs

� Or write it in a single line:
listobs(vis=‘TS8004_C_001_20190801_avg.ms/’)

� And the logs will be output into the logger

About the 3c277.1 dataset

About the 3c277.1 dataset

� From the listobs output, you will find out
about the observations.

� There are 5 sources in the dataset:
� Target 1252+5634

� Phase cal 1302+5749

� Bandpass cal 1407+2827

� Flux cal 1331+3030

� Point cal 0319+4130

� There are 4 spws, each with 128 channels
and 4 polarisations (LL,RR,LR,RL)

� This is true for all e-MERLIN standard
pipelined datasets for the _avg.ms file

� There are 6 antennas in the observation

About e-MERLIN

� If you run:
plotants(vis=‘TS8004_C_001_20190801_avg.ms’
)

� You get the antenna layout of e-MERLIN.
It is important to remember for future
steps that we should use one of the core
antennas for the reference antenna, i.e.
Mk2/Da/Pi

Basic CASA syntax

� You can set parameters that you can call
easily later on such as:

myvis = =‘TS8004_C_001_20190801_avg.ms’

� And start a task with:
plotants (vis=myvis)

Basic CASA syntax

� You can also save tasks for later using:
tput listobs

� And get the last run parameters with:
tget listobs

eMCP files and weblogs

Files/folders of the eMCP

• Inputs.ini file

• default_params.json file

• observatory.flags file

• eMCP.log and casa_eMCP.log files

• (Optionally), a manual_avg.flags file

• MS file _avg.ms data and _avg.ms.flagversions
folders

• Various folders including:

• weblog: All of the html and images for your
weblogs are stored here

• splits: A folder with the split dataset of the target
field(s)

• logs: A folder with all the last versions of the casa
tasks run and the casa logs

• eMERLIN_CASA_pipeline: The folder with all of the
eMCP materials and scripts

inputs.ini

� This file is one of the three files/folders
you need to start the pipeline from
scratch.

� The top set of parameters define your
targets and calibrators. Multiple targets
should be included separated by
commas, with the associated phase
calibrator included in a comma-
separated list

� flag file names are included, and should
not be altered

Inputs for the e-MERLIN CASA pipeline:

[inputs]

fits_path =
/scratch/raw_data/TS8004/TS8004_C_001_201
90801/DATA/

inbase = TS8004_C_001_20190801

targets = 1252+5634

phscals = 1302+5748

fluxcal = 1331+3030

bpcal = 1407+2827

ptcal = 0319+4130

Optional files and steps when they are
used:

observatory.flags [flag_apriori]

manual.flags [flag_manual]

manual_avg.flags [flag_manual_avg]

manual_narrow.flags [flag_manual_avg]

shift_phasecenter.txt [average]

inputs.ini

� The second half of this file shows you all
of the steps of the pipeline.

� They are split into pre_processing and
calibration

� Generally, the data you received from
e-MERLIN that has been calibrated with
the eMCP will have had both sections
run, but you will only be able to run the
calibration section.

Pipeline steps in groups in order of
execution:
pre_processing
run_importfits
flag_aoflagger
flag_apriori
flag_manual
average
plot_data
save_flags
#
calibration
restore_flags
flag_manual_avg
init_models
bandpass
initial_gaincal
fluxscale
bandpass_final
gaincal_final
applycal_all
flag_target
plot_corrected
first_images
split_fields

default_params.json

� This file is one of the three files/folders
you need to start the pipeline from
scratch.

� It holds all of the parameters that you
can tweak and change for the
calibration runs

� We will discuss this throughout the rest of
this workshop

{
"global": {
"update_casa-data" : true,
"refantmode" : "strict",
"refant" : "",
"is_mixed_mode" : "auto",
"applymode" :

"calflagstrict",
"run_importfits" : 1,
"flag_aoflagger" : 1,
"flag_apriori" : 1,
"flag_manual" : 1,
"average" : 1,
"plot_data" : 1,
"save_flags" : 1,
"restore_flags" : 1,
"flag_manual_avg" : 1,
"init_models" : 1,
"bandpass" : 1,
"initial_gaincal" : 1,
"fluxscale" : 1,
"bandpass_final" : 1,
"gaincal_final" : 1,
"applycal_all" : 1,
"flag_target" : 1,
"plot_corrected" : 1,
"first_images" : 1,
"split_fields" : 1

},

observatory.flags

� You should have this file in your
download area for most datasets

� It holds all of the time frames when the
telescopes were not on source and is
generated by Jodrell Bank

� If you don’t have one of these files, then
it means there was an issue with the flag
file read out and you will have to do
more flagging manually (see flag_apriori
step)

eMCP.log files

� There are two log files, the eMCP.log file
and the casa_eMCP.log file. Both of
these can be found on the weblog in
the Pipeline info tab

� On the top right is the output of the
eMCP.log file, which shows the output
of the pipeline

� On the bottom right is the
casa_eMCP.log file which shows the
casa logger information

manual flag files

� There can be a few of these files:
� manual.flags

� manual_avg.flags

� manual_narrow.flags

� These will be read in via the pipeline at
various points to perform flags inputted
manually by the user or support scientist

Example flag file from CASA docs
scan='1~3’

mode='manual’

this line will be ignored spw='9' mode='tfcrop'

correlation='ABS_XX,YY' ntime=51.0

mode='extend' extendpols=True scan='1~3,10~12’

mode='quack' quackinterval=1.0

Example flag file for e-MERLIN
mode='manual' field='1331+305' antenna=''

timerange='10:00:00~10:11:30’

mode='manual' field='' antenna='' timerange=''

spw='0:0~30’

mode='manual' field='' antenna='Mk2'

timerange='09:05:00~16:27:00’

mode='manual' field='1258-2219' antenna=''

timerange='12:57:01~12:59:59’

mode='quack' field='1258-2219,1309-2322'

quackinterval=24.

Measurement set

� This is your data!

� It is accompanied with a flagversions
file, which is appended to throughout
the pipeline so you can restore a
previous flagversions if necessary

� We will average down this data further
before we start re-calibrating it, to
speed up the processing

Weblog folders

� These are your weblogs, i.e. these are
produced by the pipeline so that you
can inspect and sanity check the
calibration has been performed
correctly.

� We will go over the weblogs in detail
next. To load these, you can use firefox
and go to the:

/workingarea/Data/TS8004_C_001/2019
0801/weblog/

� You can look at the weblogs on the
web too (see next slide)

Getting Access to
the 3C277.1 data
� All of the data will be on the 3C277.1

distribution page:
� https://www.e-

merlin.ac.uk/distribute/CY8/TS8004/TS8004.h
tml

� This is the distribution page that holds the
observing ”Runs” for a project

� The “Notes” heading is usually included in
the data distribution email from your
support scientist

� At the bottom of the page are two further
headings: “Pipeline information” and “Easy
way to re-run the pipeline”. For the
purposes of this tutorial, we only need to
look at the first link:
TS8004_C_001_20190801

https://www.e-merlin.ac.uk/distribute/CY8/TS8004/TS8004.html
https://www.e-merlin.ac.uk/distribute/CY8/TS8004/TS8004_C_001_20190801/weblog/index.html

The Home Page

� When you click on an observing run, you
are taken to the home page for that run.

� This page has information on the observing
parameters for that run.

� Importantly, all of the information on this
page refers to the data that is averaged
down an in the “_avg.ms” file made
partway through the pipeline.

� For example, the integration time of e-
MERLIN is 1s but we average to 4s in time
to save time and space for calibration

Observation
Summary
� The Observation Summary tab has a

handful of key parts
� A listobs Summary

� Sources List

� Antennas

� Source elevation
� UV Coverage plots

� The Summary includes listobs files of the
averaged (and unaveraged!) data

� The Sources table lists all of the objects
observed in this run.

Observation
Summary

� The Antennas list includes all antennas that
were used in the observing file prepared
at JBO. The reference antenna list is shown
here as calculated during the pipeline

� The source elevation plot is also shown,
with sources colourised by the field ID.

Observation
Summary

� UV coverage plots of all the sources in the
observing run are included here. These are
made prior to flagging, so you may not
have all these data available for your
observation at the end of the pipeline.

Pipeline Info

� The Pipeline Info tab shows you first
which CASA and eMCP version was
used to run the pipeline

� A long form table with each of the
calibration steps is shown with green
denoting an executed step, and red
showing a failed step.

Pipeline Info
� Log files include:

� eMCP.log -> simplified log file

� casa_eMCP.log -> casa log file output

� Parameter files include:
� eMCP_info.txt -> Parameters used for

each step of pipeline

� caltables.txt -> Parameters used for each
calibration table

Calibration

� The calibration section will be covered
during this data school, but I will give an
overview of the types of plot we have
on this tab:

� Amplitude/Phase/Delay plots: All shown
plotted against time, and colourised by
correlation (2 colours) or spw (4 colours).
� Exception is the allcal_d.K1 plot which is

colourised by field

Calibration

� Bandpass plots show the gain Amp (or
phase) plotted against the frequency,
and colourised by correlation

� You can see the band edges in these
plots, as well as the spw edges

Calibration

� Fluxscale plot: From the flux scaling step,
we scale all of the data for calibrator
fields using 3C286. This plot shows the
result of that step, plotting flux density in
Jy against Frequency. One data point
per spw, and the fit is shown in the
coloured lines per source.

Plots

� UV coverage plots of all the sources in
the observing run are included here.
These are made prior to flagging, so you
may not have all these data available
for your observation at the end of the
pipeline.

Plots

� Example calibrated plots for 1407+2827,
showing calibrated amplitude and
phase against time

Plots

� The calibrated uv plots show the data
and associated models in uv space,
plotted with amplitude or phase on the
y axis.

� You can often see small excursions from
the model in these plots which can
point to calibration errors in the data.

Flag Statistics

� The Flag Statistics tab shows the amount
of flagging at different steps of the
pipeline, in four different ways:
� By scan

� By field

� By spw

� By antenna

Images

� The Images tab shows the preliminary
images of the target and phase
calibrator, including residual images

� Another set of zoom images are also
made for each source

Download Data

� The download data tab is as it suggests,
the link will download the data from our
distribution areas

Any Questions?

The eMCP calibration procedures

The eMCP structure
� The eMCP is structured in two sections:

� pre_processing

� calibration

� In general, the pre_processing section cannot be
re-run after data has been delivered but the
calibration section can be re-run as many times
as necessary to get well-calibrated data.

� All the steps are outlined on the github page:
https://github.com/e-
merlin/eMERLIN_CASA_pipeline

https://github.com/e-merlin/eMERLIN_CASA_pipeline

pre_processing section
� The “pre_processing” section includes the

following steps:
� run_importfits

� flag_aoflagger

� flag_apriori

� flag_manual

� average

� plot_data

� save_flags

� We will go through these steps first so you know
what they do.

start_pipeline

� The start_pipeline step is not listed as a step as it is
run every time you run the pipeline

� It will output information on the terminal about
what steps are being run and read the
measurement set to find all necessary information

run_importfits

� This will load in the raw fits data and turn it into
CASA measurement set format

� It averages the data in time, but not in frequency
as it hasn’t been flagged for RFI yet

� It will run hanning smoothing on the data if it is L
band

� It will also split the data into continuum and
narrow zooms spws, if the data is in spectral line
mode

constobsid = true

scanreindexgap_s = 15.0

antenna=””

field=“”

timeaverage = true

timebin = ”4s”

chanaverage = false

chanbin = 1

usewtspectrum = false

run_hanning = “auto”

ms2mms = false

spw_separation = [“,”]

spwmap_sp = []

fix_repeated_sources = false

flag_aoflagger

� This will run the aoflagger software on the data.
Note that the importfits step did not average in
frequency, so we can use the full resolution data
to remove the band RFI on a channel by channel
basis.

� This step will only run on L band data where the
RFI environment is challenging. It will not run on C
band or K band data.

run = “auto”

fields = “all”

separate_bands = “false”

flag_apriori

� This step will make a priori flags of areas of known
bad data, including reading in the observatory
flags file.

� If an observatory flags file is not available, then
standard “quacking” of the data is performed to
remove time when the telescope was not on
target

� The far edge channels are also flagged from the
data at this stage.

border_chan_perc = 5.0

observatory_flags = true

do_estimated_quack = “auto”

all_quack = 4.0

std_cal_quack = 120.0

flag_Lo-Mk2 = true

spwmap_sp = []

observatory_flags = true

flag_manual

� This step performs additional flagging, but usually
made by the e-MERLIN support scientist.

� It flags the data before it is averaged down or
calibrated, so if there is something in the data
that should not be used, then it should be
flagged here

� This step has no default parameters

average

� This step will average the flagged dataset to the
standard 4s and by 4 in frequency.

� It has a shift_phasecenter option which can be
useful if you have a slight positional offset in the
data, but care must be taken when running this
and should be run in two parts

field = “”

timebin = “4s”

chanbin = 4

datacolumn = “data”

timerange = “”

scan = “”

antenna = “”

shift_phasecenter = false

plot_data + save_flags

� The plot_data step makes initial plots of the data
and puts them in the plots tab of the weblog.

� The one default parameter for this section should
always be left alone

� The save_flags step will save all the previous flags
into a flagversions table which will be read in
during the next part of the pipeline

� There are no default parameters

save_flags

� This step will save all the previous flags into a
flagversions table which will be read in during the
next part of the pipeline

� There are no default parameters

Any Questions?

calibration section
� The “calibration” section includes the following steps:

� restore_flags
� flag_manual_avg

� init_models
� bandpass

� initial_gaincal
� fluxscale

� bandpass_final

� gaincal_final
� applycal_all

� flag_target
� plot_corrected
� first_images
� split_fields

restore_flags +
flag_manual_avg

� The restore_flags step will restore the flagging
tables from the pre_processing part of the
pipeline, i.e. from the save_flags step.

� flag_manual_avg will read in your flags from the
manual_avg.flags file

� The flag_manual_avg part of the pipeline will also
look at Lovell data and calculate where Lovell
dropout scans are – Lovell stays on source for
every other phase calibrator scan due to its
slower slew speed.

� This step will also work out a reference antenna
based on the calibrator data

Lo_dropout = “”

Lo_datacolumn = “data”

Lo_useflags = true

Lo_spws = [“3”]

Lo_threshold = 0.5

Lo_min_scans = “”

Examples of a
manual_avg.flags file

Example of a manual_avg.flags file

mode='manual'
timerange='2019/08/02/15:43:00~2019/08/02/15
:47:00'

mode='manual' antenna='Da' spw='1' corr='LL'• Use only ONE white space to
separate the parameters (no
commas). Each key should only
appear once on a given
command line/string.

• There is an implicit mode for each
command, with the default being
'manual' if not given.

• Comment lines can start with '#'
and will be ignored. The parser
used in flagdata will check each
parameter name and type and
exit with an error if the parameter
is not a valid flagdata parameter
or of a wrong type.

You can also choose to clip the data although this is generally not
recommended as it usually means that there is bad data below that
clip level that would be better removed with a timerange flag.

Similarly, you can flag the data with a quack, if you wish, but the
pipeline should have taken care of the worst of this in the
pre_processing steps.

init_models

� This step initializes the model column in the
measurement set for 3c286, using the model
images in the e-MERLIN CASA Pipeline folder.

� This is important as 3c286 is slightly resolved on e-
MERLIN baselines and this must be taken into
account to get accurate flux recovery

calibrator_models =

“calibrator_models/”

manual_fluxcal = false

fluxcal_flux = [-1]

fluxcal_spix = 0.0

fluxcal_reffreq = “0GHz”

wtmode = “nyq”

dowtsp = false

bandpass

� The bandpass stage calibrates the bandpass
calibrator (OQ208/1407+2827) first to estimate the
bandpass response of the instrument.

� It will estimate the delay, then perform phase,
amplitude+phase corrections, and finally compute
the bandpass table

� The step will then flag the bandpass calibrator using
tfcrop, delete the tables and re-run the above in its
entirety

� This ensures that a bright RFI missed by aoflagger
does not affect the bandpass calibration

Table specific parameters to
be described in next slides

*_minblperant = 3

*_minsnr = 2
bp_uvrange = ””

bp_fillgaps = 8

bp_solnorm = true

apply_calibrators =
[”bpcal.BP0”]

apply_targets = []

run_flag = true

bpcal_d.K0

Table specific parameters
delay_tablename = “bpcal_d.K0”
delay_solint = “180s”
delay_combine = “spw”
delay_prev_cal = []
delay_interp = “linear”

delay_spw = [“*”,”innerchan”]

bpcal_d.K0

• Refant will have a flat delay

• Check that other antennas flat
relative to the refant

• They can be offset by several
ns, and the polarisations can
also be offset from each other

• Delay jumps are fine

• Variable delay rates are not
fine

bpcal_p.G0

Table specific parameters
phase_tablename =
“bpcal_p.G0”
phase_solint = “int”
phase_combine = “”

phase_prev_cal = [“bpcal_d.K0”]
phase_interp = “linear”
phase_spw = [“*”,”innerchan”]

bpcal_p.G0

• Refant will have a flat phase

• Phase should evolve slowly
over time

• Phase wrapping (over 360
degrees) is possible but
shouldn’t be occurring too
quickly

• Areas with a vertical line
suggest phase errors which
should be checked/flagged

bpcal_ap.G0

Table specific parameters
ap_tablename = “bpcal_ap.G0”
ap_solint = “32s”
ap_combine = “”
ap_prev_cal = [“bpcal_d.K0”,
“bpcal_p.G0”]
ap_interp = “linear”
ap_spw = [“*”,”innerchan”]

bpcal_ap.G0

• Two plots created: amplitude
(top) and phase (bottom)

• Phase corrections applied from
previous table mean the
phases should be all zero here

• Amplitude drop outs (see
Darnhall) should be noted for
flagging later

• Look out for variable
amplitudes or jumps –
something may have gone
wrong

bpcal.BP0

Table specific parameters
bp_tablename = “bpcal.BP0”
bp_solint = “inf”
bp_combine = “field,scan”
bp_prev_cal = [“bpcal_d.K0”,
“bpcal_p.G0” ”, “bpcal_ap.G0”]
bp_interp = “nearest,cubicflag”
bp_spw = [“*”,””]

bpcal.BP0

• Two plots created: amplitude
(top) and phase (bottom)

• Amplitude + phase plots should
show agreement between both
polarisations

• Amplitude should show band
shape, including spws and band
edge roll over and be roughly ~1

• Phase plot should be flat with the
occasional discontinuity due to
spw edges and should be
roughly ~ 0

Troubleshooting the bandpass step

� The bandpass step is usually pretty robust, as OQ208 is bright and compact.

� But if you don’t have enough data (more than ~10 mins on source) you may not get good
solutions

� Try moving minsnr parameters to lower values, or minblperant to 2, in the case where you
have poor data or have lost a few baselines for the bandpass calibrator

� Make a note of any regions where the bandpass calibrator phase or amplitude seems
unreasonable, for example in this dataset we may want to consider the amplitude drop
on Darnhall during the bpcal first scan

� At the end of this step, the solution tables are applied to the calibrators so that we can
perform calibration procedures with this preliminary bandpass taken into account

initial_gaincal

� The initial_gaincal stage calibrates all the
calibrators using the bandpass table derived in
the previous step

� It will estimate the delay, then perform phase,
amplitude+phase corrections,

� The step will then flag the calibrators, delete the
tables and re-run the above in its entirety

� This ensures that a bright RFI missed by aoflagger
does not affect the phase calibrator

Table specific parameters to
be described in next slides

use_fringefit = false

delay_cal = “default”
zerorates = true

*_minblperant = 3

*_minsnr = 2

apply_calibrators =
[”bpcal.BP0”, “allcal_d.K1”,
“allcal_p.G1”, “allcal_ap.G1”]

apply_targets = []

flagmode = “tfcrop”

allcal_d.K1

Table specific parameters
tablename = “allcal_d.K1”
solint = “180s”
combine = “spw”
prev_cal = [“bpcal.BP0”]
interp = “linear”

spw = [“*”,”innerchan”]

allcal_d.K1

• Refant will have a flat delay

• Check that other antennas flat
relative to the refant

• They can be offset by several
ns, and the polarisations can
also be offset from each other

• Delay jumps are fine

• Variable delay rates are not
fine

allcal_p.G1

Table specific parameters
p_tablename = “allcal_p.G1”
phase_solint = “int”
phase_combine = “”
phase_prev_cal =
[“bpcal.BP0”,”allcal_d.K1”]
phase_interp = “linear”
phase_spw = [“*”,”innerchan”]

allcal_p.G1

• Refant will have a flat phase

• Phase should evolve slowly
over time

• Phase wrapping (over 360
degrees) is very likely but you
should be able to see a slowly
evolving phase signal

• Areas with a vertical line
suggest phase errors which
should be checked/flagged

allcal_ap.G1

Table specific parameters
ap_tablename = “allcal_ap.G1”
ap_solint = “32s”
ap_combine = “”
ap_prev_cal = [“bpcal.BP0”,
“allcal_d.K1”,”allcal_p.G1”]
ap_interp = “linear”
ap_spw = [“*”,”innerchan”]

allcal_ap.G1

• Two plots created: amplitude
(top) and phase (bottom)

• Phase corrections applied from
previous table mean the phases
should be all zero here

• Amplitude will appear to jump
but this is fine – it reflects the
different calibrator source signals

• Look out for variable amplitudes
or jumps in the same calibrator
source– something may have
gone wrong

Troubleshooting the initial_gaincal step

� The initial_gaincal step can go awry due to over-flagging of solutions by CASA for the
phase cal.

� If this appears to be the case, then try increasing the solution intervals in the p and ap
tables

� Try moving minsnr parameters to lower values, or minblperant to 2, in the case where you
have poor data or have lost a few baselines for the phase calibrator

� You can also try combining some of the data, like by spw, but this will reduce what you
can do later on in the pipeline.

fluxscale

� The fluxscale stage will take the previous solution
tables and set the fluxes for all calibrators using
the model for 3c286

� It will return a plot with a per spw flux for each
calibrator, as well as a fit, including a spectral
index and flux density for the sources

tablename =
“allcal_ap.G1_fluscaled”

ampcal_table =
“allcal_ap.G1”

apply_calibrators =
[”bpcal.BP0”, “allcal_d.K1”,
“allcal_p.G1”,
“allcal_ap.G1_fluscaled”]

apply_targets = []

allcal_ap.G1_fluxscaled

• The plot on the right shows the
fits and fluxes of the calibrator
fields in the measurement set,
bootstrapped from the flux
calibrator 3c286.

allcal_ap.G1_fluxscaled

• The text on the right is listed in
the weblog and in the CASA
logs. It is the full set of flux
values calculated by the
pipeline including the
eMfactor. Note that I have
only shown the phase
calibrator information here.

CASA fluxscale output (not corrected by eMfactor):

Flux density for 1302+5748 in SpW=0 (freq=4.8805e+09
Hz) is: 0.477934 +/- 0.0480495 (SNR = 9.9467, N = 12)

Flux density for 1302+5748 in SpW=1 (freq=5.0085e+09
Hz) is: 0.480012 +/- 0.0514218 (SNR = 9.3348, N = 12)

Flux density for 1302+5748 in SpW=2 (freq=5.1365e+09
Hz) is: 0.479019 +/- 0.0537081 (SNR = 8.91894, N = 12)

Flux density for 1302+5748 in SpW=3 (freq=5.2645e+09
Hz) is: 0.453396 +/- 0.0575073 (SNR = 7.88416, N = 12)

Fitted spectrum for 1302+5748 with fitorder=1: Flux
density = 0.472813 +/- 0.00518869 (freq=5.07048 GHz)
spidx: a_1 (spectral index) =-0.546973 +/- 0.390837
covariance matrix for the fit: covar(0,0)=0.00313254
covar(0,1)=0.0414962 covar(1,0)=0.0414962
covar(1,1)=21.066

WARNING: All flux densities in this file need to be
multiplied by eMfactor=0.9924 to match the corrections
that have been applied to the data.

Troubleshooting the fluxscale step

� The fluxscale step requires enough good data on the phase calibrator and calibrator fields
to succeed – it can therefore be quite brittle.

� Look out for clearly erroneous fluxes or spectral indices for the calibrators

� If this part fails, try re-running previous steps to allow more data to pass, i.e. by reducing
minsnr, minblperant, or, changing the global parameters from ”calflagstrict” to “calflag”

� If 3c286 is the problem, then you may need to use one of your other bright calibrators, like
3c84 as a manual flux calibrator instead

Bandpass_final

� The bandpass_final stage takes the delay, phase
and ap solutions from the initial bandpass, and re-
calculates them using the spectral index derived
from running fluxscale.

Table specific parameters to
be described in next slides

bp_tablename = “bpcal.BP2”

bp_prev_cal = ["bpcal_d.K0",
"bpcal_p.G0", "bpcal_ap.G0"]

bp_solint = “inf”
bp_spw = [“*”,””]

bp_combine =
“nearest,cubicflag”

bp_uvrange = “”

bp_fillgaps = 8

bp_solnorm = true

apply_calibrators =
[“allcal_d.K0”,”bpcal_p.G0”,”
bpcal_ap.G0”,”bpcal.BP2”]

apply_targets = []

bpcal.BP2

• Two plots created: amplitude
(top) and phase (bottom)

• Amplitude + phase plots
should show agreement
between both polarisations

• Amplitude should show band
shape, including spws and
band edge roll over

• Phase plot should be flat with
the occasional discontinuity
due to spw edges

gaincal_final

� The gaincal_final stage will take our spectral index
dependent bandpass table (BP2) and re-derive
the phase and ap solutions for all calibrators,
using the delay solutions found earlier.

� This step will also produce a per scan solution
table in both phase and ap for the phase
calibrator. These ”scan” tables will be applied to
the target field in the next step.

� If you have a spectral line observation, it will also
compute offset and a narrow band pass table for
each zoom spectral window.

Table specific parameters to
be described in next slides

*_minblperant = 3

*_minsnr = 2
ap_calibrator = “default”

ap_scan_calibrator =
“phscals”

apply_calibrators =
[“allcal_d.K1", "bpcal.BP2",
"allcal_p.G3", "allcal_ap.G3”]
apply_targets = ["allcal_d.K1",
"bpcal.BP2",
"phscal_p_scan.G3",
"phscal_ap_scan.G3"]

allcal_p.G3

Table specific parameters
p_tablename = “allcal_p.G1”
p_prev_cal =
[“bpcal.BP2”,”allcal_d.K1”]
p_solint = “int”

p_spw = [“*”,”innerchan”]
p_combine = “”
phase_interp = “linear”

allcal_p.G3

• Refant will have a flat phase

• Phase should evolve slowly
over time

• Phase wrapping (over 360
degrees) is very likely but you
should be able to see a slowly
evolving phase signal

• Areas with a vertical line
suggest phase errors which
should be checked/flagged

allcal_ap.G3

Table specific parameters
ap_tablename = “allcal_ap.G3”
ap_prev_cal = [“bpcal.BP2”,
“allcal_d.K1”,”allcal_p.G3”]
ap_solint = “32s”

ap_spw = [“*”,”innerchan”]
ap_combine = “”
ap_interp = “linear”

allcal_ap.G3

• Two plots created: amplitude
(top) and phase (bottom)

• Phase corrections applied from
previous table mean the phases
should be all zero here

• Amplitude will appear to jump
but this is fine – it reflects the
different calibrator source signals

• Look out for variable amplitudes
or jumps in the same calibrator
source– something may have
gone wrong

phscal_p_scan.G3

Table specific parameters
p_scan_tablename =
phscal_p_scan.G3”
p_scan_prev_cal =
[“bpcal.BP2”,”allcal_d.K1”]
p_scan_spw = [“*”,”innerchan”]
p_scan_solint = “int”
p_scan_combine = “”
p_scan_interp = “linear”

phscal_p_scan.G3

• Refant will have a flat phase

• Phase should evolve slowly
over time

• Phase wrapping (over 360
degrees) is very likely but you
should be able to see a slowly
evolving phase signal

• Areas with a vertical line
suggest phase errors which
should be checked/flagged

phscal_ap_scan.G3

Table specific parameters
ap_scan_tablename =
“phscal_ap_scan.G3”
ap__scan_prev_cal =
[“bpcal.BP2”,
“allcal_d.K1”,”allcal_p.G3”]
ap_scan_solint = “inf”
ap__scan_spw =
[“*”,”innerchan”]

ap_scan_combine = “”
ap_scan_interp = “linear”

phscal_ap_scan.G3

• Two plots created: amplitude
(top) and phase (bottom)

• Phase corrections applied from
previous table mean the phases
should be all zero here

• Amplitude should not follow
smoothly across the observation

• Look out for variable amplitudes
or jumps in the same calibrator
source– something may have
gone wrong

Troubleshooting the gaincal_final step

� Like the initial_gaincal step, this step can go awry due to over-flagging of solutions by
CASA for the phase cal.

� If this appears to be the case, then try increasing the solution intervals in the p and ap
tables

� Try moving minsnr parameters to lower values, or minblperant to 2, in the case where you
have poor data or have lost a few baselines for the phase calibrator

� You can try combining solutions here too, but again it’s not ideal unless absolutely
necessary

Additional spectral line
info for gaincal_final

� While not applicable for the 3c277.1 data, if your
observations include a spectral zoom mode, then
the eMCP will also derive the narrow bandpass
solutions per each narrow spectral window, and,
calculate the offset in phases between the
narrow and continuum spws

*_minblperant = 3

*_minsnr = 2
narrow_bp_uvrange = “”

narrow_bp_fillgaps = 8

narrow_bp_solnorm = true

narrow_apply_calibrators =
["allcal_d.K1",
"narrow_bpcal.BP2",
"allcal_p.G3", "allcal_ap.G3",
"narrow_p_offset.G3"],
narrow_apply_targets =
["allcal_d.K1",
"narrow_bpcal.BP2",
"phscal_p_scan.G3",
"phscal_ap_scan.G3",
"narrow_p_offset.G3"]

narrow_p_offset.G3

Table specific parameters
p_offset_tablename =
“narrow_p_offset.G3”
p_offset_prev_cal =
[“allcal_d.K1”,”allcal_p.G3”]
p_offset_solint = “inf”
p_offset_spw = [“*”,”innerchan”]
p_offset_combine = “”
p_offset_interp = “linear”

narrow_p_offset.G3

• This is a table to compute the
phase offset of the narrow to
continuum spectral windows.

• In this case the offset is close to
but crucially not zero for both
of the narrow spectral
windows.

narrow_p_offset.G3

Table specific parameters
narrow_bp_tablename =
“narrow_bpcal.BP2”
narrow_bp_prev_cal =
[“allcal_d.K1”, "allcal_p.G3",
"allcal_ap.G3",
"narrow_p_offset.G3"]
narrow_bp_solint = “inf”
narrow_bp_spw =
[“*”,”innerchan”]
narrow_bp_combine = “”
narrow_bp_interp = “linear”

narrow_bpcal.BP2

• This is producing a band pass
for each of the narrow spectral
windows, so similar to the
continuum band pass tables
you should see a flat phase
and a band structure for gains

applycal_all

� This is the final calibration stage of the pipeline
(hurray!). It will take all of your solution tables and
apply them to your data

� It will also re-weight the data using statwt.

apply_calibrators =
["allcal_d.K1", "bpcal.BP2",
"allcal_p.G3", "allcal_ap.G3"],
apply_targets = ["allcal_d.K1",
"bpcal.BP2",
"phscal_p_scan.G3",
"phscal_ap_scan.G3"],
apply_narrow_calibrators =
["allcal_d.K1",
"narrow_bpcal.BP2",
"allcal_p.G3", "allcal_ap.G3",
"narrow_p_offset.G3"]
apply_narrow_targets =
["allcal_d.K1",
"narrow_bpcal.BP2",
"phscal_p_scan.G3",
"phscal_ap_scan.G3",
"narrow_p_offset.G3"]
run_statwt = true
statwt_timebin = 0.001s

Troubleshooting the applycal_all step

� This step is similar to the gaincal steps in that it could fail if there have been a lot of failed
solutions previously. It is sometimes useful to revisit your previous calibration tables and
check them if the pipeline fails here

� One additional thing to note that may not be obvious until the imaging stage is that statwt
can sometimes cause issues with the data, leading to a green “blank” screen when
imaging. This is due to statwt putting NaNs in the data. It is therefore worth running through
to the imaging part of the pipeline after running applycal_all to check this

flag_target

� This is a final flagging step to now go and flag the
target, having applied all of the calibration
solutions from our calibrators.

� You can choose either to run tfcrop (the default)
or rflag. Whichever one you choose the default
parameters are similar to those in the CASA
default parameters for tfcrop or rflag.

mode_to_run = "tfcrop”

mode_to_run = ”rflag"

mode = "rflag"
sources = “targets"

antenna = ""

scan = ""

spw = ""

correlation = ""
ntime = "scan"

combinescans = false

datacolumn = "corrected"

timedevscale = 4.5

freqdevscale =4.5
extendflags = true

action = "apply"

display = ""

flagbackup = false

flag_target

� This is a final flagging step to now go and flag the
target, having applied all of the calibration
solutions from our calibrators.

� You can choose either to run tfcrop (the default)
or rflag. Whichever one you choose the default
parameters are similar to those in the CASA
default parameters for tfcrop or rflag.

mode_to_run = "tfcrop”

mode_to_run = ”tfcrop"
mode = "tfcrop"
sources = "targets"
antenna = ""
scan = ""
spw = ""
correlation = ""
ntime =""
combinescans = false
datacolumn = "corrected"
winsize = 3
timecutoff = 4.5,
freqcutoff = 4.5,
maxnpieces = 7,
uwstats = "none",
halfwin = 1,
extendflags = true,
action = "apply",
display = "",
flagbackup = false

first_images

� Now to make some images of your sources and
phase calibrator fields, which is what this step
does

� It performs the deconvolution automatically and
displays both the image and residual maps for
the target and phase calibrator sources

Imsize = 1024
niter = 80
deconvolver = hogbom
nterms = 1
scales = [],
weighting = "briggs"
robust = 0.5
gain = 0.1
uvrange = "",
uvtaper = []
restoringbeam = []
nsigma = 5.0
sidelobethreshold = 1.0
noisethreshold = 8.0
lownoisethreshold = 1.5
minbeamfrac" = 0.2
growiterations = 25
parallel = true
level0 = 3.0
zoom_range_pix = 150

first_images

� Top image is the target field intensity map and
bottom image is the residual image

� The pipeline automatically chooses an image
contrast level and contours based upon the flux
and noise in the image

� The peak flux and rms noise are stated in the
weblogs

� Look out for ripples across the image (we will
discuss this further later) that could be calibration
errors

� Important to remember that this is auto-
thresholded image with few iterations – it may not
be a great image!

first_images

� Top image is the phase cal field intensity map
and bottom image is the residual image

� The pipeline automatically chooses an image
contrast level and contours based upon the flux
and noise in the image

� The peak flux and rms noise are stated in the
weblogs

� Look out for ripples across the image (we will
discuss this further later) that could be calibration
errors

� Important to remember that this is auto-
thresholded image with few iterations – it may not
be a great image!

split_fields

� After imaging your data, the eMCP will split out
the target fields by default into their own
measurement sets

� It does some averaging on these split datasets, so
that you can quickly inspect and re-image them
later

� All of the split measurement sets are placed in the
“splits” directory.

fields = “targets"

timeaverage = true
timebin = "8s"

chanaverage = true,

chanbin = 2,

datacolumn = "corrected",

createmms = false,
output_dir = "./splits"

Any Questions?

Inspecting the weblogs and
pipeline outputs

What to do after running the pipeline

� Generally, it’s a good idea to look at the weblogs straight away, before inspecting the
data directly.

� As a support scientist, I usually start at the images and work my way backwards through
the tabs, trying to find bad data

� The Calibrated UV Plots are incredibly useful and overlooked part of the pipeline weblog
outputs which can highlight issues with data quickly

� We will now go through the weblog outputs and inspect the data with a live
demonstration of what to look for

Inspecting the data –
images first

Start with the phase calibrator image.
Does it look like a point source?

If so, are there any calibration errors?

Are there any large scale ripples
across the intensity or residuals map
that could point to problems?

Pictured – intensity image of phase
calibrator

Inspecting the data –
images first

Start with the phase calibrator image.
Does it look like a point source?

If so, are there any calibration errors?

Are there any large scale ripples
across the intensity or residuals map
that could point to problems?

Pictured – residual image of phase
calibrator

Inspecting the data – images first

� The target image is nice to see, especially
if you know roughly what the structure of
the source should be, but it doesn’t tell
you much about the calibration as any
calibration errors will have been folded
through previously

� Next up, go to the Plots tab in the weblog

Inspecting the data – the
Plots tab of the weblog

Do your calibrators look like point
sources?

How noisy is the data?

Are there any amplitude dropouts?

Are there any phase discontinuities?

Do the calibrator models look like the
calibrated data?

Pictured - 3c286 calibrated data and
model

Data =/=
model

Inspecting the data – the
Plots tab of the weblog

Do your calibrators look like point
sources?

How noisy is the data?

Are there any amplitude dropouts?

Are there any phase discontinuities?

Do the calibrator models look like the
calibrated data?

Pictured - phase calibrator calibrated
data and model

Phase
jumps

Inspecting the data – the
Plots tab of the weblog

Do your calibrators look like point
sources?

How noisy is the data?

Are there any amplitude dropouts?

Are there any phase discontinuities?

Do the calibrator models look like the
calibrated data?

Pictured - target calibrated data

Amplitude
drops

Inspecting the data – use
the calibrated UV plots

Do your calibrators look like point
sources?

How noisy is the data?

Are there any amplitude dropouts?

Are there any phase discontinuities?

Do the calibrator models look like the
calibrated data?

Pictured - band pass calibrated data,
Amp vs time

Amplitude jumps at
specific time intervals
for Darnhall

Inspecting the data – the Plots tab of the
weblog

� The plots tab is an under utilised part of
the weblog

� It shows you all the issues with the data in
a handful of easy-to-read plots

� The main question to ask yourself is: do my
calibrators look like calibrators? Does my
target look like a target?

� These may look correct and fine, but we
should also check the flux scaling and
band pass tables – look to the Calibration
tab

